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We describep-mechanical (Kisil, V. V. (1996)Journal of Natural Geometr9(1), 1—

14; Kisil, V. V. (1999). Advances in Mathematics47(1), 35-73; Prezhdo, O. V. and

Kisil, V. V. (1997). Physical Review A6(1), 162—175) brackets that generate quantum
(commutator) and classical (Poisson) brackets in corresponding representations of the
Heisenberg group. Weo notuse any kind of semiclassical approximation or limiting
procedure forh — 0.

1. INTRODUCTION

The purpose of this short announcement is to describe “brackets’pin a
mechanical setting (Kisil, 1996, 1999; Prezhdo and Kisil, 1997), which generates
both classical (Poisson) and quantum (commutator) brackets. Consequently we are
able to derive dynamical equation in classical and quantum cases from the same
consistent source.

The principal step in transition from Lagrangian to Hamiltonian mechan-
ics is the introduction by means of the Legendre transformes¥ independent
variables—coordinates and momenta—instead of coordinates and depending from
them their time derivatives—the velociti@sSimilarly thep-mechanical construc-
tion (Kisil, 1996, 1999; Prezhdo and Kisil, 1997) is based on the introduction by
means of the Fourier transform of new variabkes«( y) such thatx, y) is Fourier
dual to @, p) ands is Fourier dual to the Planck constdmtit appeared that points
(s, %, y) are elements of the Heisenberg grdilip(Howe, 1980a,b; Taylor, 1986)

(see also (2.5)).

It is known from the works of von Neumann that the Heisenberg picture
of quantum mechanics is generated by infinite dimensional nhoncommutative ir-
reducible unitary representations HI" (Howe, 1980b). But one-dimensional
(commutative!) unitary representationsli#? are often not employed. It is shown
within p-mechanical framework that these one-dimensional representations
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contain classical dynamics exactly in the same way as infinite-dimensional
ones—quantum.

An important feature of our approach is that denotuse any kind of semi-
classical approximation or limiting procedure for— 0. The classical picture
is not any more an imperfect shade of the “correct” quantum description—both
quantum and classical pictures stand on the equal ground.

Here we present p-mechanical version of brackets and a dynamical equation
generated by them. Our considerations are illustrated by a simple example of
harmonic oscillator. More involved examples allowing mix quantum and classical
components within one system will be presented elsewhere.

2. PRELIMINARIES
2.1. Groups and Their Representations

We considelL, (R") equipped with the scalar product

1 _
(10 = s [ F0080 o 2.2)
/4 R"
Throughout the paper we use the standard notation for the Fourier transform:
[Ff](h) = f(h) = \/Zn/ f(s)e " ds

Let G be a group with an invariant measutg L 1(G, dg) could be upgraded
from a linear space to an algebra with the convolution multiplication:

(ks # k2)(Q) = /G ku(h) ko(h~*g) dh = /G k@h ke dh  (22)

Let p be a representation & (Taylor, 1986, Chap. 1), we will work mainly
with unitary irreducible ones. We could extepdo L4(G, dg) by the formula:

p(K) = /G K(@)o(g) dg (2.3)

From the general properties of representations of Lie groups (Taylor, 1986, Chap. 1,
(2.17)) we have

p(ke) +Ap(ke) = p(ki + Aka),  p(ki)p(ke) = p(ka * ko). (2.4)

This could be reinforced in the following statement.

Lemma 2.1. (Algebraic Inheritance Let p(ay, a,, ..., ay) be a polynomial in
non-commuting arguments,ay, . . ., &,. Letfunctionsk k, .. ., ky from L;(G)
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satisfy to the identity
p(kl, k2, . kn) = O,
where multiplication is defined as the group convolution on G. Then

p(p(ky), p(K2), - .., p(kn)) =0
for an arbitrary representation of G.

2.2. The Heisenberg Groudl" and its Representations

Let (s, X, ¥), wherex, y e R" ands € R, be an element of the Heisenberg
groupH" (Howe, 1980a,b; Taylor, 1986). The group lawidhis given as follows:

(s, %, Y)*(s,X,y) = <s+ s + %(xy —Xy),x+x,y+ y’) ) (2.5)

For our purpose we need all irreducible representations of the diBup
They are given by the following famous theorem:

Theorem 2.2. (Stone—von Neumah(Kirillov, 1976,518.4; Taylor, 1986¢ 1.2).
All unitary irreducible representations of the Heisenberg grdlipup to unitary
equivalence are as follows:

(i) Forany h € (0, oco) the Schddinger irreducible noncommutative unitary
representations in £(R")

pih(si X, y) — ei(:i:S<h|j:X-h1/2M+y~ hl/zD), (26)
where xM and yD are such unbounded self-adjoint operatorsgR'):
(x- h2M)u(v) = h23 " xjv; u(v), 2.7)
ht/2 au
- h¥2D =— j—. 2.8
(y Juw) = =2 Vig, (2:8)

Representatiof2.6) acts on a function (v) as follows:
pen(S, X, Y) U(v) = & EEHY/2)-hisx-ht2) u(v+ h*2y).  (2.9)
(i) For (g, p) € R* commutative one-dimensional representation€on
o@p)(S X, y)u=€e@+PMy  uec. (2.10)
In some sense (Kisil, 1996) the last representations (2.10) correspond to the

caseh = 0. While other representations Bf' could be transformed to the above
ones by unitary operators it is better sometime to stay with alternative forms
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tailored to particular models. For example, the Segal-Bargmann representation
(Bargmann, 1961; Segal, 1963) is well suited for quantum field theory and its
relation to the Scludinger representation (2.6) illuminate many results in analysis
and quantum theory (Howe, 1980Db).

Representations (2.6)—(2.10) generate accordingly to (2.3) representations
of convolution algebra_(H") expressed by formulas (Taylor, 1986, Chap. 1,

(3.9)):
pxnlk(s, X, )] = k(xh, £h¥2M, h¥?D), (2.11)
pa.nlk(s x, y)] =k(,4, p). (2.12)

Theright side of (2.11) specifies a pseudodifferential operator (PDangarider,
1985; Shubin, 1987) with the Weyl symbk{£h, +h¥/2x, h'/2¢). Such a PDO
with a symbola(v, v) is defined by

a.(M, D) u(v) = (27)™N /R /R ¢ v=U a(zu + (1 — 7)v, v) u(u) dv du.

(2.13)
The right side of (2.12) is just a constant frdin
Using (2.4) withp equal either ten, (2.6) or top(, p) (2.10) we obtain

[K1, Kg] = K1Ky — KKy, p = pn, h#0;
0, P = P(a.p):

where operator&; andK, are Weyl PDO defined by (2.11) for functioksand
ko, respectively.

oK * ko — ko % kq) = { (2.14)

3. QUANTUM AND CLASSICAL BRACKETS
3.1. p-Mechanical Brackets and its Quantum and Classical Representations
Let L} (R) be the linear subspace bf functions onR such that
S [ee]
lim s/ f(t)dt=0, and Iims/ f(t)dt=0.
S—>—00 —0o S—00 s

A nontrivial function fromL7 (R) is, for examplexe™. The following could be
easily seen (cf. (Kirillov and Gvishiani, 1982]V.1.1, ands IV.2.3)).

Lemma3.1. (i) L7 (R) is aclosed ideain convolution algebra L (R).
(i) The Fourier transform of functions from7(R) are among continuous
functions such that (0) = 0.
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Let A be an anti-derivation—linear unbounded operator froifR) onto the
space of integrable functions dhdefined by the formula:

[Af](s) = /S f(t)dt= /OO x(s—1) f(t)dt, (3.1)
wherey (t) is the Heaviside function:
=17 fso 2

From the definition it follows that

Lemma 3.2. The antiderivative4 enjoys the following properties:

(i) A0 =0, where0 s the function identically equal 1. The functiorDis
the only element of the kernel &: ker A = {0};
(i) A commutes with all shifts (§) — f(s+ a) and their linear comb-
inations—convolution operators dk.
(i) For f e LY(R) the limits at infinity vanish:

Jim [Af](s) = lim [Af](s) = lim s[.Af](s)
= sIim s[Af](s) =0. (3.3)
(iv) If f1, fo € LY(R)thenA(fy* fp) = (Af1) % f, = f1 % (Af,)isagain
in LY (R).
From integration by parts:
e—ish
—ih

/_”[Af](sw-is“ds:[Af](s) ) —/_w f(s)e__;: ds

and (3.3) we obtain
HIFFIh), h#0;
FlAafhy=1" 3.4
LATIh) {—«/anfooof(s)sds h =0, (34)

for f(s) € LY(R). In fact we could take the last formulae as a definition of the
operatorA.

Definition 3.3. The p-mechanical bracketsf two functionski(s, x, y), ka(s, X,

y) on the HeisenberH" are defined as follows:

{ke, ko]t = A(Ky % ko — ko * ky), (3.5)
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wherex denotes the group convolution &' of two functions andA acts as an
antiderivative with respect of the varialde

This definition of the p-mechanical bracket has sensekifa(s, Xo, Yo) €
LY(R) for any fixedxo, Yo € R". Because of Lemma 3.2.(iv) the-brackets of
two such functions is again b} (R), thus.A is meaningful in (3.5). While this
completely serves the purpose of the present paper future extensions of Definition
3.3 are also possible. Note also, that we ptitcondition only with respect to
variables; variablesx andy, which are Fourier-dual to physical coordinates and
momenta, are unrestricted.

Lemma 3.4. The p-mechanical brackef8.5) have the following properties:

(i) They are linear.
(i) They are antisymmetrigks, ko = —{kz, kq]}.
(iii) They satisfy to the Jacoby identity

{{ke, kol ks + {{ka, ks], kalt + {{ks, kal}, ket = O. (3.6)
(iv) They are a derivation, i.e. satisfy to the Leibniz rule:
{[ke * ko, ka]} = {[ka, ks]} * ka2 + kg * {ko, ka]}. (3.7
Proof: The linearity and antisymmetric properties are obvious. Two other prop-
erties are secured because

(i) A commuteswith convolutions (Lemma 3.2. (ii)) and sends zero function
to itself (Lemma 3.2.(i));

(i) The commutatoik; * ky, — ky * k; satisfies both to Jacoby and Leibniz
identity.

For example the Leibniz identity could be verified as follows:
ke * ko, k3]t = A (K1 * ko * kg — k3 * kg % k)
= A(Ky * ko % k3 — kg * kg * ko + kg x kg * ko — kg % kg * kp)
= A(Ky * ko x k3 — kg * k3 * ko)
+ A (kg * k3 * ko — kg % kg * k) (3.8)
=ky *x A(ky % k3 — kg x ko) + A(ky x ks — ks x ki) xky  (3.9)
= kg * {ko, ka]} + {[kq, Ka]} * ko,
where (3.8) follows from the linearity oA and (3.9) is a consequence of Lemma
3.2.(i). O

Now we describe image of the brackets under representatidiis. of
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Proposition 3.5. The images of p-mechanical brack¢ss5) under infinite di-
mensional representations,, h # 0and finite dimensional representationg, p)
are quantum commutant and Poisson brackets of funckipaadks,, respectively:

1. - 1
m[kl, ko] = m(Kle —K2K1), p=pn hz#0;
1, K2y = 3q ap ap 99" P = P@,p)-

Proof: The proofis a straightforward calculation using (3.4). We will carry them
separately for cases bf#£ 0 andh = 0.
Letp = pn, h # 0. Then

pn(ke, kel)) = fH Tk, k2D)(0) pn(@) dg

— A(kj_ * k2 _ k2 * kl) (S, X, y) ei(:I: hsl+ hY2xM+ h'/2yD) dg
Hn

— %/ (kl * k2 _ kz * kl) (S, X, y) ei(ihslihl/zxM+h1/2yD) dg
Hn
(3.11)
1
= m[Kl, Kal, (3.12)

where the line (3.11) follows from the first case in (3.4) and (3.12) is exactly the
first case in (2.14).

The second case = p(q,p) (Symbolically corresponding tat'= 0”) is also
not difficult but somehow longer:

pan i kel) = |l ed(@) ra (@) 49

= A (k% kp — ko % k) (s, X, y) €@+ dg

Hn

= / (ko % ki — Ky % ko) (S, X, y) sé@+PY) dg (3.13)
Hn

= / / (kz(s/, X, ¥ kg <s —s + g

X'y —xy

x=x,y— y’) —ki(s, X, Y) kz(s A 5

x—x,y— y’)) dg'se@+py dqg
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We use the second case of (3.4) to obtain (3.13). Now let us change variables
X'y =Xy,
2 1

X//y/ _ X/y//
2 ’

X" =xX—x, y//:y_y/’ s =s—g +
(3.14)
XIZX//+X/' y=y”+y/, SZS//+S/+

and continue the above calculations:

= /H ) /H (koS X, Y)Y ka(s", X7, Y") — k(S X, Y ) a(S”, X", Y1)
X <s” +s + M) @ H)+p'+Y) g dg’

— / / (kz(S/, X/, y/) k]_(SH, X”, y//) _ k]_(S/, X/, y/) kz(S”, X”, y//)) (315)
H" JH"

x (8" + ) @ +py) g@x'+py) g dg’ (3.16)

+ /H n /H (ka8 X Y)Y ka(S" X", ') = k(S X V) (S X, )
(3.17)

XY - XY" dax+py) d@x+pY) 4g dgf’. (3.18)

Interchanging primed and double primed variablesin (3.15) and (3.16) we conclude
that the integral is equal to itself with the opposite sign and thus vanish. In contrast
such an interchange in the integral (3.17) and (3.18) lead to a continuation of
(3.15)—(3.18):

— / / (kz(S/, X/, y/) kl(S//, X”, y//) _ kl(S/, X/, y/) kz(S//, X//, y//))
H" JH"
x X"y €@+py) d@+pY) qgf dg’
— / kz(S/, X/, y/) y/ ei ax'+py) dg// kl(SN, X//, y//) X" ei @ax"+py’) dg//
H" H"
_/ k]_(S/, X/, y/) y/ ei @ax'+py) dg// kz(S//, XN, y//) X" ei @ax"+py”) dg//
H" H"
dka(0, 0, p) 9k1(0,9, p)  9ki(0,q, p) 3ke(0, q, p)

Ip 99 ap aq
= {kq, ka}.

This finishes the proof. O
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Remark 3.6. Let S, Xj,Y; j =1,...,n be vectors spanning the Lie algebra of
H", i.e. [Xj, Y;] = Sand all other commutators vanish. Consequently the only
nontrivial p-brackets among those vectors dr¥;, Y]} = §;k|. By the alge-
braic inheritance (Lemma 2.1) we find the only nontrivial quantum and classical
brackets:

%[Ph(xj)a en(Y)l =1, 1o, X3)s ppay (Yi)} = 1.

The role of the antiderivatived in (3.5) is highlighted by a comparison of
(2.14) and (3.10)4 does not only insert the muItipqu}g in guantum commutant,
it also (and this is essentially new in our construction) producesradtrivial
classical representatioof the p-mechanical brackets.

The following corollary is very well known but we would like to incorporate
it in our scheme.

Corollary 3.7. The quantum commutator and the Poisson brackets are linear,
antisymmetric, and satisfy to the Jacq8y6) and Leibniz(3.7)identities.

Proof: The properties follows from the corresponding properties pof
mechanical brackets (Lemma 3.4) and conservation of algebraic identities by
representations (Lemma 2.1)0

As a direct consequence of the Proposition 3.5 we obtain the following
statement:

Theorem 3.8. Let a function {t; s, %, y) defined orR x H" be a solution of the
p-mechanical equation:

d, B
i f s y) = (. H) (3.19)

with a “Hamiltonian” H (s, x, y) onH". Then

(i) The operator f (t; M, D) = [pn f](t; M, D) representing {t; s, X, y)
underpp, (2.11)is a solution of the Heisenberg equation

d. | 1
5 fnlti X, D) = [, Hyl, (3.20)

with the Hamiltonian operator H(M, D) = [pnH] (M, D) from(2.11)
(i) The function {(t;a, p) = [, p) f] constructed by2.12)is a solution
of the Hamilton equation:

d
a fO (tr q, p) = {f01 HO}, (321)
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where the Hamiltonian functiond{q, p) = [, pH] is also defined by
(2.12)

Remark 3.9. We could equivalently state the universal equation (3.19) in a some-
what simpler form

9 d
sogrf GBS XY =(FxH—H«),

which was already proposed in Kisil (1996), but it hides the universal nature of
p-mechanical bracket (3.5).

Corollary 3.10. (Consistence of Dynamics Dynamic defined by p-mechanical
equation(3.19)and consequently by either its derivation—the Heisenberg equa-
tion (3.20) or the Hamilton equatioii3.21)}—has the properties

(i) The identity G0) = A(0) + B(0) for three observables will be valid
through the evolution @) = A(t) + B(t), t € R4

(ii) It preserves a time independent Hamiltonian.

(i) Corresponding bracke{q A, BJ}, {A, B}, [A, B]) of two observables A
and B is again an observable evolving by the same equation.

(iv) Theidentity @0) = A(0)B(0)forthree observables will be valid through
the evolution @) = A(t)B(t),t € R,.

(v) The Schadinger—Luiville and Hamilton—Heisenberg pictures of motion
are equivalent.

Proof: Itis known (see Caro and Salcedo (1999)) that the above four properties
are a direct consequence of those from Lemma 3.4. Again the properties are very
well known for the quantum commutator and the Poisson brackets.

Of course, it is not difficult to give a general form of a solution to fhe
mechanical equation of motions:

Proposition 3.11. Let
f(t;s, X, y) = expt.AH) fo(s, X, y) expt.AH),
= exp(tH_4) fo(s, X, y) exptH.4), (3.22)

be a function defined dR x H". Here in(3.22)H is the convolution ofil" with a
Hamiltonian function Hs, X, y), A is the anti-derivative operat3.1), and Hq
is the convolution with functioH (s, X, y).
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Then f(t; s, x, y) from (3.22)satifies to the p-mechanical dynamic equation
(3.19)

Note that we never use in the above consideration any kind of limits and ap-
proximations of the typé — 0. Both cases ofi # 0 andh = 0 were proven in-
dependently without any references to each other. On the other hand this limit does
exist in the induced topology (Kirillov, 1976,7.3) on the dual objedf", i.e. the
set of equivalence classes of unitary irreducible representation of the Heisenberg
group. This topology was considered for example in Kirillov (1994, Example 7.11)
and Kisil (1996) and it was shown that the set of representatigr € (0, €)
is dense in the set of representatigRg ), p, € R". Because we obtain both
Egs. (3.20) and (3.21) from the same source (3.19) we could conclude:

Corollary 3.12. (The Correspondence Principgle Quantum dynamics is dense
in classic dynamics, or in loose terms: classical dynamics a limiting case of quan-
tum one.

3.2. Example: The Harmonic Oscillator

We consider “the lovely pet” of quantum mechanics—the harmonic oscillator.
Fortunately its consideration withip-mechanics is as well easy.

The well-known (Taylor, 1986;, 1.6) Hamiltonian of a classical harmonic os-
cillator is Ho(q, p) = g2 + p?and in quantum case HamiltoniarHs, = h(M?2 +
D?), where operator/ and D are defined in (2.7) and (2.8). It is easy to find a
p-mechanical Hamiltonian that generates both quantum and classical ones.

Lemma 3.13. (i) Let
H(s, X, y) = 8(5)8P(x)8(y) + 8(s)8 ()P (y), (3.23)

wheres@ is the second derivative (Kirillov and Gvishiani, 1982)1.4.4) of the
Dirac delta functions(x). Then H, = h(M? 4 D?) and Hy(q, p) = g° + p? are
images of H under representatiopg (2.11)and p(q, ) (2.12)correspondingly.

(i) The p-mechanical equatioh = {H, f]} of the harmonic oscillator is

d n 9 9
= f(t: -2 oy D)t . 24
S ftsxy) ;(xj ay, Y axj> (t;s X, y) (3.24)

Proof: To establish first statement one verifies images ¢, x, y) = §@(x) +
5@(y) under representations, (2.11) ando(q, p) (2.12) by a direct calculation. We
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proceed with a derivation of the Eq. (3.24). Let (Taylor, 1986, Chap. 1, (1.27))

0 i d d Xj d
X 2 N yp_ 2 X9 (3.25)
ax;  20s '9y; 20s
0 i 0 a Xj 0 .
xt= 2 Y%y % X% here 1<j<n, (3.26)
" 9xj 2 0s 'y, 29s

be the left and the rightinvariant vector fieldsléihcorrespondingly. They generate
the rightr (s, x, y) and the lefl (s, x, y) shifts onL,(H") correspondingly (left
invariant vector fields generate right shifts and vise verse):

n
epo Xj X
=1

r0,x,0, exp) xX;=1(0,x,0), X=(X,...,X)

n

j=1

n
r0,y,0), exp)_ yY;=1(0,y,0), y=(Y1 ... ¥n)
s

n
exp)_viYj
=1 j

Then we could express convolutions (2.2) wéf® as second-order differential
operators:

(5(5)8P()8(y)) * f = i (XD E (59808 (y)) * f = Zn: (YH? 1,
j=1 j=1

f % (8(5)8@(x)8(y)) = Z (xg)2 f, o fx(8(8)5(x)89(y)) = Z (Y;)2 f.
j=1 j=1

Therefore the commutatof[H] is
fx (8()8P()8(y) + 8()3(x)54(y))
— (8(5)8P(x)3(y) + 8(5)8(x)8P(y)) = f

[f. H]

|
x
‘T\>

+

=
s

|
<
\./N

I
=
\_/N

i

n
- (zyj D05 ii) f (3.27)
: 9S 0X; 0s 9y
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We substitute values from (3.25) and (3.26) in order to obtain (3.27). Finally the
p-brackets (3.5) are

{f, H} = A[f, H]

)& a ad
a2 ()
os i \ax; Ty
_22”: B (3.28)

=1

Substitution of the last formula (3.28) intemechanical equation (3.19) proves
(3.24). O

The solution of the Eq. (3.24) is well known.

Lemma 3.14. The evolution of an observablgtfs, x, y) of the p-mechanical
harmonic oscillator is given by

f(t;s, X, y) = fo(s, X cost + y sint, —x sint + y cost) (3.29)
= fo(s, €'2), for z=x+ iy,

where §(s, X, ¥) = f(0;s, x, y) is the initial value of the observable att 0.

The above evolution is transparently geometric. To preserve this property
in qguantum mechanics we introduce in our consideration the Segal-Bargmann
(-Fock) space (Bargmann, 1961; Berezin, 1974; Berger and Coburn, 1987
Guillemin, 1984; Howe, 1980b; Segal, 1963). Le{C", du,) be a space of func-
tions onC", which are square-integrable with respect to the Gaussian measure

dun(2) = 77" e 22 dV2),

where d(z) = dxdy is the Euclidean volume measure @' =R?*". The
Segal-Bargmann (Bargmann, 1961; Segal, 1963) spa@@") is the subspace
of L(C", dun) consisting of all entire functions, i.e. functiorigz) that satisfy
of
— =0, 1<j=<n
82]
Then the Heisenberg groul” acts on F(C") by the irreducible unitary
representation
Bn(s, 2) f (w) = exp(@sh +ivhzw— |z]%) f (w 4 ivh2), (3.30)

wherez = x + iy, (s, z) € H". By the Stone—von Neumann Theorem 2.2 repre-
sentations (2.6) and (3.30) are unitary equivalent.
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Example 3.15. Inthe Segal-Bargmann representation (Berger and Coburn, 1987)
creation and annihilation operators aﬁe: zjl anda; = 9/9z;, respectively.

The corresponding quantum Hamiltonian of harmonic oscillator is obtained by the
Bargmann projection

1 n 1 n 9
Tha.p = EPQZ (af + PP 1 =3 (nl + sza_z,) . (3.31)
j=1 j=1

Therightside of (3.31) is the celebrated Euler operator. It generates the well-known
dynamical group (Taylor, 1986, Chap. 1, (6.35))

etThan f(z2) = "2 f (e'2), f(2) € F(CM), (3.32)

which induces rotation of th€" space. Note that the frequency of the above
rotation does not depend from

The evolution of the classical oscillator is also given by a rotation with the
same frequency, that of the phase spate

2t)=Gizo=¢€"2, z(t)=pt)+iqt), 2 =po+ig. (3.33)

The projectionPq leads to the Segal-Bargmann representation, providing a very
straightforward correspondence between quantum and classical mechanics of os-
cillators, in contrast to the rather complicated case of the Heisenberg representa-
tion (Taylor, 1986, Chap. 1, Prop. 7.1). The powergzafre the eigenfunctions
¢n(2) = 2" of the Hamiltonian (3.31), and the integeamsare the correspond-

ing eigenvalues. Either pure or mixed, any initial state of the oscillator remains
unchanged during the (3.32) evolutions and no transitions between states are
observed.
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