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We describep-mechanical (Kisil, V. V. (1996).Journal of Natural Geometry9(1), 1–
14; Kisil, V. V. (1999).Advances in Mathematics147(1), 35–73; Prezhdo, O. V. and
Kisil, V. V. (1997).Physical Review A56(1), 162–175) brackets that generate quantum
(commutator) and classical (Poisson) brackets in corresponding representations of the
Heisenberg group. Wedo notuse any kind of semiclassical approximation or limiting
procedure forh→ 0.

1. INTRODUCTION

The purpose of this short announcement is to describe “brackets” in ap-
mechanical setting (Kisil, 1996, 1999; Prezhdo and Kisil, 1997), which generates
both classical (Poisson) and quantum (commutator) brackets. Consequently we are
able to derive dynamical equation in classical and quantum cases from the same
consistent source.

The principal step in transition from Lagrangian to Hamiltonian mechan-
ics is the introduction by means of the Legendre transform ofnew independent
variables—coordinates and momenta—instead of coordinates and depending from
them their time derivatives—the velocitiesq̇. Similarly thep-mechanical construc-
tion (Kisil, 1996, 1999; Prezhdo and Kisil, 1997) is based on the introduction by
means of the Fourier transform of new variables (s, x, y) such that (x, y) is Fourier
dual to (q, p) ands is Fourier dual to the Planck constanth. It appeared that points
(s, x, y) are elements of the Heisenberg groupHn (Howe, 1980a,b; Taylor, 1986)
(see also (2.5)).

It is known from the works of von Neumann that the Heisenberg picture
of quantum mechanics is generated by infinite dimensional noncommutative ir-
reducible unitary representations ofHn (Howe, 1980b). But one-dimensional
(commutative!) unitary representations ofHn are often not employed. It is shown
within p-mechanical framework that these one-dimensional representations
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contain classical dynamics exactly in the same way as infinite-dimensional
ones—quantum.

An important feature of our approach is that wedo notuse any kind of semi-
classical approximation or limiting procedure forh→ 0. The classical picture
is not any more an imperfect shade of the “correct” quantum description—both
quantum and classical pictures stand on the equal ground.

Here we present ap-mechanical version of brackets and a dynamical equation
generated by them. Our considerations are illustrated by a simple example of
harmonic oscillator. More involved examples allowing mix quantum and classical
components within one system will be presented elsewhere.

2. PRELIMINARIES

2.1. Groups and Their Representations

We considerL2 (Rn) equipped with the scalar product

〈 f, g〉 = 1

πn/2

∫
Rn

f (x)ḡ(x) dx. (2.1)

Throughout the paper we use the standard notation for the Fourier transform:

[F f ](h) = f̂ (h) =
√

2π
∫ ∞
−∞

f (s) e−ish ds.

Let G be a group with an invariant measuredg. L1(G, dg) could be upgraded
from a linear space to an algebra with the convolution multiplication:

(k1 ∗ k2)(g) =
∫

G
k1(h) k2(h−1g) dh=

∫
G

k1(gh−1) k2(h) dh. (2.2)

Let ρ be a representation ofG (Taylor, 1986, Chap. 1), we will work mainly
with unitary irreducible ones. We could extendρ to L1(G, dg) by the formula:

ρ(k) =
∫

G
k(g)ρ(g) dg. (2.3)

From the general properties of representations of Lie groups (Taylor, 1986, Chap. 1,
(2.17)) we have

ρ(k1)+ λρ(k2) = ρ(k1+ λk2), ρ(k1)ρ(k2) = ρ(k1 ∗ k2). (2.4)

This could be reinforced in the following statement.

Lemma 2.1. (Algebraic Inheritance). Let p(a1, a2, . . . , an) be a polynomial in
non-commuting arguments a1, a2, . . . , an. Let functions k1, k2, . . . , kn from L1(G)
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satisfy to the identity

p(k1, k2, . . . , kn) = 0,

where multiplication is defined as the group convolution on G. Then

p(ρ(k1), ρ(k2), . . . , ρ(kn)) = 0

for an arbitrary representationρ of G.

2.2. The Heisenberg GroupHn and its Representations

Let (s, x, y), wherex, y ∈ Rn ands ∈ R, be an element of the Heisenberg
groupHn (Howe, 1980a,b; Taylor, 1986). The group law onHn is given as follows:

(s, x, y) ∗ (s′, x′, y′) =
(

s+ s′ + 1

2
(xy′ − x′y), x + x′, y+ y′

)
. (2.5)

For our purpose we need all irreducible representations of the groupHn.
They are given by the following famous theorem:

Theorem 2.2. (Stone–von Neumann) (Kirillov, 1976,§18.4; Taylor, 1986,§ 1.2).
All unitary irreducible representations of the Heisenberg groupHn up to unitary
equivalence are as follows:

(i) For any h ∈ (0,∞) the Schr̈odinger irreducible noncommutative unitary
representations in L2(Rn)

ρ±h(s, x, y) = ei (±s·hI±x·h1/2M+y· h1/2D), (2.6)

where xM and yD are such unbounded self-adjoint operators on L2(Rn):

(x · h1/2M) u(υ) = h1/2
∑

xjυ j u(υ), (2.7)

(y · h1/2D) u(υ) = h1/2

i

∑
yj
∂u

∂υ j
. (2.8)

Representation(2.6)acts on a function u(υ) as follows:

ρ± h(s, x, y) u(υ) = ei (±(s+xy/2) ·hI±x·h1/2υ) u
(
υ + h1/2y

)
. (2.9)

(ii) For (q, p) ∈ R2n commutative one-dimensional representations onC:

ρ(q, p)(s, x, y) u = ei (qx+py)u, u ∈ C. (2.10)

In some sense (Kisil, 1996) the last representations (2.10) correspond to the
caseh = 0. While other representations ofHn could be transformed to the above
ones by unitary operators it is better sometime to stay with alternative forms
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tailored to particular models. For example, the Segal–Bargmann representation
(Bargmann, 1961; Segal, 1963) is well suited for quantum field theory and its
relation to the Schr¨odinger representation (2.6) illuminate many results in analysis
and quantum theory (Howe, 1980b).

Representations (2.6)–(2.10) generate accordingly to (2.3) representations
of convolution algebraL1(Hn) expressed by formulas (Taylor, 1986, Chap. 1,
(3.9)):

ρ±h[k(s, x, y)] = k̂(±h,±h1/2M, h1/2D), (2.11)

ρ(q, p)[k(s, x, y)] = k̂(0, q, p). (2.12)

The right side of (2.11) specifies a pseudodifferential operator (PDO) (H¨ormander,
1985; Shubin, 1987) with the Weyl symbolk̂(±h,±h1/2x, h1/2ξ ). Such a PDO
with a symbola(υ, ν) is defined by

aτ (M, D) u(υ) = (2π )−N
∫
RN

∫
RN

ei 〈υ−u,ν〉 a(τu+ (1− τ )υ, ν) u(u) dν du.

(2.13)
The right side of (2.12) is just a constant fromC.

Using (2.4) withρ equal either toρh (2.6) or toρ(q, p) (2.10) we obtain

ρ(k1 ∗ k2− k2 ∗ k1) =
{

[K1, K2] = K1K2− K2K1, ρ = ρh, h 6= 0;
0, ρ = ρ(q, p),

(2.14)

where operatorsK1 andK2 are Weyl PDO defined by (2.11) for functionsk1 and
k2, respectively.

3. QUANTUM AND CLASSICAL BRACKETS

3.1. p-Mechanical Brackets and its Quantum and Classical Representations

Let Lυ1(R) be the linear subspace ofL1 functions onR such that

lim
s→−∞ s

∫ s

−∞
f (t) dt = 0, and lim

s→∞ s
∫ ∞

s
f (t) dt = 0.

A nontrivial function fromLυ1(R) is, for example,xe−x2
. The following could be

easily seen (cf. (Kirillov and Gvishiani, 1982,§ IV.1.1, and§ IV.2.3)).

Lemma 3.1. (i) Lυ1(R) is aclosed idealin convolution algebra L1 (R).
(ii) The Fourier transform of functions from Lυ1(R) are among continuous

functions such that̂f (0)= 0.
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Let A be an anti-derivation—linear unbounded operator fromLυ1(R) onto the
space of integrable functions onR defined by the formula:

[A f ](s) =
∫ s

−∞
f (t) dt =

∫ ∞
−∞

χ (s− t) f (t) dt, (3.1)

whereχ (t) is the Heaviside function:

χ (t) =
{

0, if t ≤ 0;
1, if t > 0.

(3.2)

From the definition it follows that

Lemma 3.2. The antiderivativeA enjoys the following properties:

(i) A0= 0, where0 is the function identically equal to0. The function0 is
the only element of the kernel ofA : kerA = {0};

(ii) A commutes with all shifts f(s)→ f (s+ a) and their linear comb-
inations—convolution operators onR.

(iii) For f ∈ Lυ1(R) the limits at infinity vanish:

lim
s→−∞[A f ](s) = lim

s→∞[A f ](s) = lim
s→−∞ s[A f ](s)

= lim
s→∞ s[A f ](s) = 0. (3.3)

(iv) If f1, f2 ∈ Lυ1(R) thenA ( f1 ∗ f2) = (A f1) ∗ f2 = f1 ∗ (A f2) is again
in Lυ1(R).

From integration by parts:∫ ∞
−∞

[A f ](s) e−ish ds= [A f ](s)
e−ish

−i h

∣∣∣∣∞
−∞
−
∫ ∞
−∞

f (s)
e−ish

−i h
ds

and (3.3) we obtain

F [A f ](h) =
{ 1

i h [F f ](h), h 6= 0;

−√2π
∫∞
−∞ f (s) s ds, h = 0,

(3.4)

for f (s) ∈ Lυ1(R). In fact we could take the last formulae as a definition of the
operatorA.

Definition 3.3. The p-mechanical bracketsof two functionsk1(s, x, y), k2(s, x,
y) on the HeisenbergHn are defined as follows:

{[k1, k2]} = A(k1 ∗ k2− k2 ∗ k1), (3.5)
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where∗ denotes the group convolution onHn of two functions andA acts as an
antiderivative with respect of the variables.

This definition of the p-mechanical bracket has sense ifk1,2(s, x0, y0) ∈
Lυ1(R) for any fixedx0, y0 ∈ Rn. Because of Lemma 3.2.(iv) thep-brackets of
two such functions is again inLυ1(R), thusA is meaningful in (3.5). While this
completely serves the purpose of the present paper future extensions of Definition
3.3 are also possible. Note also, that we putLυ1-condition only with respect to
variables; variablesx andy, which are Fourier-dual to physical coordinates and
momenta, are unrestricted.

Lemma 3.4. The p-mechanical brackets(3.5)have the following properties:

(i) They are linear.
(ii) They are antisymmetric{[k1, k2]} = −{[k2, k1]}.

(iii) They satisfy to the Jacoby identity

{[{[k1, k2]}, k3]} + {[{[k2, k3]}, k1]} + {[{[k3, k1]}, k2]} = 0. (3.6)

(iv) They are a derivation, i.e. satisfy to the Leibniz rule:

{[k1 ∗ k2, k3]} = {[k1, k3]} ∗ k2+ k1 ∗ {[k2, k3]}. (3.7)

Proof: The linearity and antisymmetric properties are obvious. Two other prop-
erties are secured because

(i) A commutes with convolutions (Lemma 3.2. (ii)) and sends zero function
to itself (Lemma 3.2.(i));

(ii) The commutatork1 ∗ k2− k2 ∗ k1 satisfies both to Jacoby and Leibniz
identity.

For example the Leibniz identity could be verified as follows:

{[k1 ∗ k2, k3]} = A (k1 ∗ k2 ∗ k3− k3 ∗ k1 ∗ k2)

= A (k1 ∗ k2 ∗ k3− k1 ∗ k3 ∗ k2+ k1 ∗ k3 ∗ k2− k3 ∗ k1 ∗ k2)

= A (k1 ∗ k2 ∗ k3− k1 ∗ k3 ∗ k2)

+A (k1 ∗ k3 ∗ k2− k3 ∗ k1 ∗ k2) (3.8)

= k1 ∗A (k2 ∗ k3− k3 ∗ k2)+A (k1 ∗ k3− k3 ∗ k1) ∗ k2 (3.9)

= k1 ∗ {[k2, k3]} + {[k1, k3]} ∗ k2,

where (3.8) follows from the linearity ofA and (3.9) is a consequence of Lemma
3.2.(ii). ¤

Now we describe image of the brackets under representations ofHn.
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Proposition 3.5. The images of p-mechanical brackets(3.5) under infinite di-
mensional representationsρh, h 6= 0 and finite dimensional representationsρ(q, p)

are quantum commutant and Poisson brackets of functionsk̂1 andk̂2, respectively:

ρ({[k1, k2]}) =


1

ih
[k̂1, k̂2] = 1

ih
(K1K2− K2K1), ρ = ρh, h 6= 0;

{k̂1, k̂2} = ∂ k̂1

∂q

∂ k̂2

∂p
− ∂ k̂1

∂p

∂ k̂2

∂q
, ρ = ρ(q, p).

(3.10)

Proof: The proof is a straightforward calculation using (3.4). We will carry them
separately for cases ofh 6= 0 andh = 0.

Let ρ = ρh, h 6= 0. Then

ρh({[k1, k2]}) =
∫
Hn

{[k1, k2]}(g) ρh(g) dg

=
∫
Hn
A (k1 ∗ k2− k2 ∗ k1) (s, x, y) ei (± hs I± h1/2x M+ h1/2yD) dg

= 1

i h

∫
Hn

(k1 ∗ k2− k2 ∗ k1) (s, x, y) ei (±hs I±h1/2x M+h1/2yD) dg

(3.11)

= 1

i h
[K1, K2], (3.12)

where the line (3.11) follows from the first case in (3.4) and (3.12) is exactly the
first case in (2.14).

The second caseρ = ρ(q, p) (symbolically corresponding to “h = 0”) is also
not difficult but somehow longer:

ρ(q, p)({[k1, k2]}) =
∫
Hn
{[k1, k2]}(g) ρ(q, p)(g) dg

=
∫
Hn
A (k1 ∗ k2− k2 ∗ k1) (s, x, y) ei (qx+py) dg

=
∫
Hn

(k2 ∗ k1− k1 ∗ k2) (s, x, y) sei (qx+py) dg (3.13)

=
∫
Hn

∫
Hn

(
k2(s′, x′, y′) k1

(
s− s′ + x′y− xy′

2
,

x − x′, y− y′
)
− k1(s′, x′, y′) k2

(
s− s′ + x′y− xy′

2
,

x − x′, y− y′
))

dg′sei (qx+py) dg.
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We use the second case of (3.4) to obtain (3.13). Now let us change variables

x′′ = x − x′, y′′ = y− y′, s′′ = s− s′ + x′y− xy′

2
;

x′ = x′′ + x′, y = y′′ + y′, s= s′′ + s′ + x′′y′ − x′y′′

2
,

(3.14)

and continue the above calculations:

=
∫
Hn

∫
Hn

(k2(s′, x′, y′) k1(s′′, x′′, y′′)− k1(s′, x′, y′) k2(s′′, x′′, y′′))

×
(

s′′ + s′ + x′′y′ − x′y′′

2

)
ei (q(x′′+x′)+p(y′′+y′)) dg′ dg′′

=
∫
Hn

∫
Hn

(k2(s′, x′, y′) k1(s′′, x′′, y′′)− k1(s′, x′, y′) k2(s′′, x′′, y′′)) (3.15)

× (s′′ + s′) ei (qx′+py′) ei (qx′′+py′′) dg′ dg′′ (3.16)

+
∫
Hn

∫
Hn

(k2(s′, x′, y′) k1(s′′, x′′, y′′)− k1(s′, x′, y′) k2(s′′, x′′, y′′))

(3.17)

× x′′y′ − x′y′′

2
ei (qx′+py′) ei (qx′′+py′′) dg′ dg′′. (3.18)

Interchanging primed and double primed variables in (3.15) and (3.16) we conclude
that the integral is equal to itself with the opposite sign and thus vanish. In contrast
such an interchange in the integral (3.17) and (3.18) lead to a continuation of
(3.15)–(3.18):

=
∫
Hn

∫
Hn

(k2(s′, x′, y′) k1(s′′, x′′, y′′)− k1(s′, x′, y′) k2(s′′, x′′, y′′))

× x′′y′ ei (qx′+py′) ei (qx′′+py′′) dg′ dg′′

=
∫
Hn

k2(s′, x′, y′) y′ ei (qx′+py′) dg′
∫
Hn

k1(s′′, x′′, y′′) x′′ ei (qx′′+py′′) dg′′

−
∫
Hn

k1(s′, x′, y′) y′ ei (qx′+py′) dg′
∫
Hn

k2(s′′, x′′, y′′) x′′ ei (qx′′+py′′) dg′′

= ∂ k̂2(0, q, p)

∂p

∂ k̂1(0, q, p)

∂q
− ∂ k̂1(0, q, p)

∂p

∂ k̂2(0, q, p)

∂q

= {k1, k2}.
This finishes the proof. ¤
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Remark 3.6. Let S, X j , Yj j = 1, . . . , n be vectors spanning the Lie algebra of
Hn, i.e. [X j , Yj ] = S and all other commutators vanish. Consequently the only
nontrivial p-brackets among those vectors are{[X j , Yk]} = δ jk I . By the alge-
braic inheritance (Lemma 2.1) we find the only nontrivial quantum and classical
brackets:

1

i h
[ρh(X j ), ρh(Yj )] = I ,

{
ρ(p,q) (X j ), ρ(p,q) (Yj )

} = I .

The role of the antiderivativeA in (3.5) is highlighted by a comparison of
(2.14) and (3.10).A does not only insert the multiplier1i h in quantum commutant,
it also (and this is essentially new in our construction) produces anon-trivial
classical representationof the p-mechanical brackets.

The following corollary is very well known but we would like to incorporate
it in our scheme.

Corollary 3.7. The quantum commutator and the Poisson brackets are linear,
antisymmetric, and satisfy to the Jacoby(3.6)and Leibniz(3.7) identities.

Proof: The properties follows from the corresponding properties ofp-
mechanical brackets (Lemma 3.4) and conservation of algebraic identities by
representations (Lemma 2.1).¤

As a direct consequence of the Proposition 3.5 we obtain the following
statement:

Theorem 3.8. Let a function f(t; s, x, y) defined onR × Hn be a solution of the
p-mechanical equation:

d

dt
f (t ; s, x, y) = {[ f, H ]} (3.19)

with a “Hamiltonian” H (s, x, y) onHn. Then

(i) The operator fh (t ; M, D) = [ρh f ](t ; M, D) representing f(t; s, x, y)
underρh (2.11)is a solution of the Heisenberg equation

d

dt
f h(t ; X, D) = 1

i h
[ f h, Hh], (3.20)

with the Hamiltonian operator Hh (M, D) = [ρh H ] (M, D) from(2.11).
(ii) The function f0 (t ; q, p) = [ρ(q, p) f ] constructed by(2.12) is a solution

of the Hamilton equation:

d

dt
f0 (t ; q, p) = { f0, H0}, (3.21)
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where the Hamiltonian function H0 (q, p) = [ρ(q, p) H ] is also defined by
(2.12).

Remark 3.9. We could equivalently state the universal equation (3.19) in a some-
what simpler form

∂

∂s

d

dt
f (t ; s, x, y) = ( f ∗ H − H ∗ f ),

which was already proposed in Kisil (1996), but it hides the universal nature of
p-mechanical bracket (3.5).

Corollary 3.10. (Consistence of Dynamics). Dynamic defined by p-mechanical
equation(3.19)and consequently by either its derivation—the Heisenberg equa-
tion (3.20), or the Hamilton equation(3.21)—has the properties

(i) The identity C(0)= A(0)+ B(0) for three observables will be valid
through the evolution C(t) = A(t)+ B(t), t ∈ R+

(ii) It preserves a time independent Hamiltonian.
(iii) Corresponding brackets({[ A, B]}, {A, B}, [A, B]) of two observables A

and B is again an observable evolving by the same equation.
(iv) The identity C(0)= A(0)B(0) for three observables will be valid through

the evolution C(t) = A(t)B(t), t ∈ R+.
(v) The Schr̈odinger–Luiville and Hamilton–Heisenberg pictures of motion

are equivalent.

Proof: It is known (see Caro and Salcedo (1999)) that the above four properties
are a direct consequence of those from Lemma 3.4. Again the properties are very
well known for the quantum commutator and the Poisson brackets.¤

Of course, it is not difficult to give a general form of a solution to thep-
mechanical equation of motions:

Proposition 3.11. Let

f (t ; s, x, y) = exp(−tAH ) f0(s, x, y) exp(tAH ),

= exp(−tHA) f0(s, x, y) exp(tHA), (3.22)

be a function defined onR×Hn. Here in(3.22)H is the convolution onHn with a
Hamiltonian function H(s, x, y),A is the anti-derivative operator(3.1), and HA
is the convolution with functionAH (s, x, y).
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Then f(t ; s, x, y) from (3.22)satifies to the p-mechanical dynamic equation
(3.19).

Note that we never use in the above consideration any kind of limits and ap-
proximations of the typeh→ 0. Both cases ofh 6= 0 andh = 0 were proven in-
dependently without any references to each other. On the other hand this limit does
exist in the induced topology (Kirillov, 1976,§ 7.3) on the dual object̂Hn, i.e. the
set of equivalence classes of unitary irreducible representation of the Heisenberg
group. This topology was considered for example in Kirillov (1994, Example 7.11)
and Kisil (1996) and it was shown that the set of representationρh, h ∈ (0, ε)
is dense in the set of representationsρ(q, p), p, q ∈ Rn. Because we obtain both
Eqs. (3.20) and (3.21) from the same source (3.19) we could conclude:

Corollary 3.12. (The Correspondence Principle). Quantum dynamics is dense
in classic dynamics, or in loose terms: classical dynamics a limiting case of quan-
tum one.

3.2. Example: The Harmonic Oscillator

We consider “the lovely pet” of quantum mechanics—the harmonic oscillator.
Fortunately its consideration withinp-mechanics is as well easy.

The well-known (Taylor, 1986,§ 1.6) Hamiltonian of a classical harmonic os-
cillator is H0(q, p) = q2+ p2 and in quantum case Hamiltonian isHh = h(M2+
D2), where operatorsM andD are defined in (2.7) and (2.8). It is easy to find a
p-mechanical Hamiltonian that generates both quantum and classical ones.

Lemma 3.13. (i) Let

H (s, x, y) = δ(s)δ(2)(x)δ(y)+ δ(s)δ(x)δ(2)(y), (3.23)

whereδ(2) is the second derivative (Kirillov and Gvishiani, 1982,§ III.4.4) of the
Dirac delta functionδ(x). Then Hh = h(M2+ D2) and H0(q, p) = q2+ p2 are
images of H under representationsρh (2.11)andρ(q, p) (2.12)correspondingly.

(ii) The p-mechanical equatioṅf = {[H, f ]} of the harmonic oscillator is

d

dt
f (t ; s, x, y) = 2

n∑
j=1

(
xj

∂

∂yj
− yj

∂

∂xj

)
f (t ; s, x, y). (3.24)

Proof: To establish first statement one verifies images ofH (s, x, y) = δ(2)(x)+
δ(2)(y) under representationsρh (2.11) andρ(q, p) (2.12) by a direct calculation. We
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proceed with a derivation of the Eq. (3.24). Let (Taylor, 1986, Chap. 1, (1.27))

Xr
j =

∂

∂xj
+ yj

2

∂

∂s
, Yr

j =
∂

∂yj
− xj

2

∂

∂s
, (3.25)

Xl
j =

∂

∂xj
− yj

2

∂

∂s
, Yl

j =
∂

∂yj
+ xj

2

∂

∂s
, where 1≤ j ≤ n, (3.26)

be the left and the right invariant vector fields onHn correspondingly. They generate
the rightr (s, x, y) and the leftl (s, x, y) shifts onL2(Hn) correspondingly (left
invariant vector fields generate right shifts and vise verse):

exp
n∑

j=1

xj X
r
j = r (0, x, 0), exp

n∑
j=1

xj X
l
j = l (0, x, 0), x = (x1, . . . , xn)

exp
n∑

j=1

yj Y
r
j = r (0, y, 0), exp

n∑
j=1

yj Y
l
j = l (0, y, 0), y = (y1, . . . , yn).

Then we could express convolutions (2.2) withδ(2) as second-order differential
operators:

(
δ(s)δ(2)(x)δ(y)

) ∗ f =
n∑

j=1

(
Xl

j

)2
f,

(
δ(s)δ(x)δ(2)(y)

) ∗ f =
n∑

j=1

(
Yl

j

)2
f,

f ∗ (δ(s)δ(2)(x)δ(y)
) = n∑

j=1

(
Xr

j

)2
f, f ∗ (δ(s)δ(x)δ(2)(y)

) = n∑
j=1

(
Yr

j

)2
f.

Therefore the commutator [f, H ] is

[ f, H ] = f ∗ (δ(s)δ(2)(x)δ(y)+ δ(s)δ(x)δ(2)(y)
)

− (δ(s)δ(2)(x)δ(y)+ δ(s)δ(x)δ(2)(y)
) ∗ f

=
n∑

j=1

( (
Xr

j

)2+ (Yr
j

)2− (Xl
j

)2− (Yl
j

)2 )
f

=
n∑

j=1

((
Xr

j − Xl
j

) (
Xr

j + Xl
j

)+ (Yr
j − Yl

j

) (
Yr

j + Yl
j

))
f

=
n∑

j=1

(
2yj

∂

∂s

∂

∂xj
− 2xj

∂

∂s

∂

∂yj

)
f (3.27)

= 2
∂

∂s

n∑
j=1

(
yj

∂

∂xj
− xj

∂

∂yj

)
f.
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We substitute values from (3.25) and (3.26) in order to obtain (3.27). Finally the
p-brackets (3.5) are

{[ f, H ]} = A[ f, H ]

= A2
∂

∂s

n∑
j=1

(
yj

∂

∂xj
− xj

∂

∂yj

)
f

= 2
n∑

j=1

(
yj

∂

∂xj
− xj

∂

∂yj

)
f. (3.28)

Substitution of the last formula (3.28) intop-mechanical equation (3.19) proves
(3.24). ¤

The solution of the Eq. (3.24) is well known.

Lemma 3.14. The evolution of an observable f(t ; s, x, y) of the p-mechanical
harmonic oscillator is given by

f (t ; s, x, y) = f0(s, x cost + y sint,−x sint + y cost) (3.29)

= f0(s, e−i t z), for z= x + iy ,

where f0(s, x, y) = f (0;s, x, y) is the initial value of the observable at t= 0.

The above evolution is transparently geometric. To preserve this property
in quantum mechanics we introduce in our consideration the Segal–Bargmann
(-Fock) space (Bargmann, 1961; Berezin, 1974; Berger and Coburn, 1987;
Guillemin, 1984; Howe, 1980b; Segal, 1963). LetL2(Cn, dµn) be a space of func-
tions onCn, which are square-integrable with respect to the Gaussian measure

dµn(z) = π−n e−z·z̄ dv(z),

where dv(z) = dx dy is the Euclidean volume measure onCn = R2n. The
Segal–Bargmann (Bargmann, 1961; Segal, 1963) spaceF2(Cn) is the subspace
of L2(Cn, dµn) consisting of all entire functions, i.e. functionsf (z) that satisfy

∂ f

∂ z̄j
= 0, 1≤ j ≤ n.

Then the Heisenberg groupHn acts on F2(Cn) by the irreducible unitary
representation

βh(s, z) f (w) = exp(2ish+ i
√

hzw− |z|2) f (w + i
√

hz̄), (3.30)

wherez= x + iy, (s, z) ∈ Hn. By the Stone–von Neumann Theorem 2.2 repre-
sentations (2.6) and (3.30) are unitary equivalent.
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Example 3.15. In the Segal–Bargmann representation (Berger and Coburn, 1987)
creation and annihilation operators area+j = zj I anda−j = ∂/∂zj , respectively.
The corresponding quantum Hamiltonian of harmonic oscillator is obtained by the
Bargmann projection

TH (q, p) = 1

2
PQ

n∑
j=1

(
q2

j + p2
j

)
I = 1

2

(
nI +

n∑
j=1

zj
∂

∂zj

)
. (3.31)

The right side of (3.31) is the celebrated Euler operator. It generates the well-known
dynamical group (Taylor, 1986, Chap. 1, (6.35))

eitTH (q, p) f (z) = eint/2 f (eit z), f (z) ∈ F2(Cn), (3.32)

which induces rotation of theCn space. Note that the frequency of the above
rotation does not depend fromh.

The evolution of the classical oscillator is also given by a rotation with the
same frequency, that of the phase spaceR2n

z(t) = Gt z0 = eit z0, z(t) = p(t)+ iq(t), z0 = p0+ iq0. (3.33)

The projectionPQ leads to the Segal–Bargmann representation, providing a very
straightforward correspondence between quantum and classical mechanics of os-
cillators, in contrast to the rather complicated case of the Heisenberg representa-
tion (Taylor, 1986, Chap. 1, Prop. 7.1). The powers ofz are the eigenfunctions
φn(z) = zn of the Hamiltonian (3.31), and the integersn are the correspond-
ing eigenvalues. Either pure or mixed, any initial state of the oscillator remains
unchanged during the (3.32) evolutions and no transitions between states are
observed.
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